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A method is proposed to calculate the Boltzmann non equilibrium entropy as a 
Taylor series expansion in terms of the successive moments of the velocity dis- 
tribution function. As a first application, the entropy of the BKW solution of 
the Boltzmann equation is calculated for both even and odd dimensions. The 
properties of the entropy of the Tjon Wu model ( d =  2) are studied and a quan- 
titative condition is derived, showing that the McKean conjecture is incorrect. 
As a second application of the method, the entropy of one of the solutions of the 
very hard particle model for the Boltzmann equation is also derived. 

KEY WORDS:  Boltzmann entropy; BKW solution; McKean conjecture; 
VHP model. 

1. I N T R O D U C T I O N  

The Boltzmann nonequilibrium dimensionless entropy for an evolving 
system of similar particles described by a velocity distribution f(v, t) in d 
dimensions is given by 

S(t) = -H( t )  = - f  f(v, t)in f(v, t) day (1) 

From the knowledge of S(t) it is possible to analyze the process of a system 
relaxing toward equilibrium and to study near equilibrium statesJ 1) 
According to Boltzmann's H theorem, the approach to equilibrium for any 
solution of the Boltzmann equation is accompanied by a monotonic 
increase in the value of the Boltzmann entropy (dS/dt>~O). A possible 
extension of the H theorem, first discussed by McKean ~2~ and Harris ~3) 
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states that all derivatives of S(t)  approach their equilibrium value of zero 
monotonically: 

( - 1)" dnS/dt " <~ 0 (2) 

implying an "infinitely smooth" approach to equilibrium. This alternating 
derivative property (known in the literature as the McKean conjecture) has 
stimulated some controversy. It was shown to hold for any solution of the 
linearized Boltzmann equation ~4 6~ but not to hold for a solution of the 
Bhatnager-Gross-Krook (BGK) equation for Maxwellian molecules. ~7) 
Because, until recently, no general proof of (2) had been found, 
investigations into whether or not the McKean conjecture would hold for 
an exact solution of the full nonlinear Boltzmann equation (BE) were 
undertaken. In recent years some exact solutions of the nonlinear BE have 
indeed been found for two kinds of homogeneous systems described, 
respectively, by the Maxwell and very hard particle models. (8) A few years 
ago Bobylev ~9~ and Krook and Wu (a~ found an exact analytical solution 
(the BKW solution) of the nonlinear BE for the case where the inter- 
molecular differential cross section is inversely proportional to the 
molecules' relative velocity. More  recently, Ernst ~1) and Ziff ~12) obtained a 
d-dimensional generalization of the BKW solution given by 

f ( v ,  t) = e x p ( -  v2/2c~) [(2c~ - d +  dc~)/2c~ + v2( 1 - c~)/2c~2]/(27zc~) d/2 (3) 

where c~= 1 - e  - t  and is valid for t>~ ln[ (d+2) /2] .  The time, t, has been 
scaled by a constant which depends upon the angular dependence of the 
differential cross section. 

For  d =  3, Rouse and Simons ~13) have found that the second time 
derivative of the BKW solution remains negative in approaching 
equilibrium. The integrals involved in the calculation of dZS/dt 2 were 
evaluated numerically, but no direct calculation of S(t)  or dS/dt appeared 
in their paper. Ziff et al. ~4) were able to express the first time derivative of 
the d-dimensional BKW solution in a closed form, but they said in their 
paper that the logarithmic integral contained in S(t)  could not be 
calculated in closed form. They computed numerically higher derivatives of 
S(t)  showing that the McKean conjecture holds for n up to 30 and for 
l~<d~<6. 

Contrary to the above studies, Lieb ~15) recently showed, by using a 
theorem on the properties of completely monotonic functions, that the 
McKean conjecture cannot hold for the d-dimensional BKW solution. The 
result was confirmed by an asymptotic analysis by Olaussen, ~16) who 
showed that for d =  3, (2) breaks down for n = 102 and for t = 15. For  all d, 
the same conclusion was obtained analytically by Garrett./17~ The last three 
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papers contain a derivation of the first time derivative of S(t) as a starting 
point, but none of these authors was able to derive S(t) in closed form for 
the d-dimensional BKW solution. Recently, however, the author, (Is) using 
error functions, has been able to calculate in closed form the Boltzmann 
entropy of the BKW solution for d =  3. Garrett 's result with regard to the 
violation of the McKean conjecture was also analytically confirmed for all 
dimensions. 

As Garrett  mentioned in his paper, (17) the numerical search for the 
lowest n, for which violation of the McKean conjecture occurs, would be of 
considerable interest. No such evaluation has ever been found yet. Also, the 
calculation in closed form of the Boltzmann entropy of the BKW solution 
still remains to be done for all d. 

In this paper, a general method to calculate Boltzmann non- 
equilibrium entropy is presented. The entropy is expanded in a Taylor 
series as a function of the successive moments of the velocity distribution 
function. This method is general enough to be applicable to a large class of 
distribution functions and could give the entropy in closed form every time 
the infinite series obtained converges. As a first application of the method, 
the entropy of the d-dimensional BKW solution is calculated in closed form 
(valid for t>ln[(d+4)/2)] with two different results for odd and even 
values of d. A simple expression for the entropy of the Tjon-Wu model 
( d =  2) is derived and as a way of checking the result, dS/dt is calculated 
and compared to previous results. An approximate but sufficient condition 
is derived for which the McKean conjecture is necessarily violated for d =  2 
and an approximate value of n for which this occurs is calculated; the 
method can be easily extended to all values of d. Then, as a second 
application of the entropy calculation method, the entropy of a particular 
exact solution of the VHP model is calculated for which the initial dis- 
tribution function is a superposition of two Maxwellians. 

2. BOLTZMANN ENTROPY AS A M O M E N T  SERIES 
EXPANSION 

For any nonequilibrium distribution function f(v, t), the function 
g(v, t ) =  ln[f (v ,  t )]  is defined and it is expanded around a particular value 
of the velocity (a) in a Taylor series: 

, = o  t,D--7~v~)<, k! 
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The Bol tzmann  en t ropy  S(t) can be expressed 

which, for a = 0, takes the form 

S(t) = --k~=O ~ \~v---Uv~ j ~ mk(t ) (4) 

where m~(t) is the m o m e n t  of order  k o f f ( v ,  t). 
In this pape r  it is shown that  in certain cases, Eq. (4) gives a useful 

me thod  to calculate the Bol tzmann  en t ropy  whenever  the logar i thmic  
integral conta ined  in (1) cannot  be found in s tandard  tables. (19'2~ 

3. T H E  B K W  S O L U T I O N  

The d-dimensional  B K W  solution is writ ten 

f (v,  t) = A(C + Dv2/2) exp(-Bv2/2)  (5) 

in which A = 1/(27c~) p, B =  l /a,  C =  ( ~ - p + p ~ ) / ~ ,  D =  (1 _~) /~2 ,  and 
p = d/2. The cor responding  function g(v, t) is then 

g(v, t) = In A - By2~2 + ln(C + Dv2/2) (6) 

The  successive derivatives of g(v, t) with respect to v, evaluated at v = 0, 
can easily be calculated; the odd derivatives are zero and the even 
derivatives are found to be 

( a2g)  D 

 Tjo = (7) 
0-~-~j ~ = ( - 1) k + '  2(2k - 1 )! k >~ 2 

The even m o m e n t s  of (5) are defined 

f A(C + Dv2/2) v 2k exp( - By2/2) ddv m2k( t ) 

Trans fo rming  to the variable u = v2/2 the following expression is obtained:  

m2k(t) = (2"~)P/F(p) 2kAu k+p- le ~"(C+Du) du 

= U A ( Z n ) p / F ( p ) [ C K ( k + p ) / B k + P + D F ( k + p +  1)/B k+p+l ] (8) 
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Using (4), (6), (7), and (8), the entropy of the d-dimensional BKW 
solution can be expressed as the following infinite series: 

S(t) = - I n  AC + (2rOP/[F(p)] ABCF(p  + 1 )[ 1 + (p + 1 ) D/BC]/B p +l 

- ( 2 ; T ) P A C / [ F ( p ) B p ]  ~ ( - -1)k+I/k  
k = l  

x [ r ( k  + p) / (BC/D) k + F(k + p + 1)/(BC/D) k + ']  (9) 

The series contained in equation (9) can now be evaluated in closed form 
in two different ways, depending ifp is half-integer (odd d) or integer (even 
d). 

4. T H E  E N T R O P Y  OF T H E  B K W  S O L U T I O N  FOR 
O D D  D I M E N S I O N S  

The incomplete 7 function can be expanded in the following infinite 
series(2~ 

F(a,X)=X" le-X ~ F(1-a+k)/[X~F(1-a)] (10) 
k = 0  

valid when X >  1. With 1 - a = p ,  equation (10) can be written 

( - 1 )~ r ( p  + k ) /X  k = F(p) XpeXF(1 - p, X) 
k = O  

(11) 

Using this result, the first infinite series contained in the entropy (9) can be 
transformed in the following way ( X =  BC/D): 

$1=  ~ ( - 1 )  k + l F { k + p ) / ( k X  k) 
k = l  

= f  (1/X) ( - 1 ) ~ F ( k + p ) / X ~ - F ( p ) ] d x  
k 0 

= F(p)  f X p ~e xF( 1 - p, X) dX - F(p) In X ( 12 ) 

Equations (6-5-3) and (6-5-12) from Abramowitz and Stegun (2~ are 
used to express the integrand of (12) as 

X P - l e X F ( 1 - p , X ) = X  p l e X I ' ( 1 - p ) - M ( 1 , 2 - p , X ) / ( 1 - p )  (13) 

822/41,,1-2-22 
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where M(1, 2 -  p, X) is a hypergeometric Kummer function. Replacing 
(13) into (12) and using equation (6-5-4) (2o) leads to 

Sl  = ( -  1)2~ r ( p ) 2  r ( 1  - p)  7*(p,  - x )  - r ( p )  in x 

+ F ( p - 1 ) f M ( 1 , 2 - p , X ) d x  (14) 

The integral contained in the last equation can be calculated by expending 
the Kummer function in power series (for X > I ) ;  the result of the 
integration gives rise to a generalized hypergeometric function: 

I M(1, 2 - p, X) dX= X +  X2/[2(2 - P)]2 Fz(1, 2; 3, 3 - p; X) (15) 

The second infinite series in Eq. (9) can be expressed as a function of Slin 
the following manner: 

$2 = ~ (--1) k + l F ( k + p ) ( k + p ) / k y  k+l 
k~l 

= ( l / X )  ~ (--1) k+l F ( k + p ) / X k + ( p / X )  ~ (--1) k+l F ( k + p ) / k X  k 
k=l k=l 

= r ( p ) / X -  r (p )  x p-  'eXF(1 - p, x )  + (p/X) $1 (16) 

The using Eq. (9), (14), (15), and (16), and rearranging terms, the follow- 
ing expression is obtained for the Boltzmann entropy of the BKW solution 
for odd dimensions: 

S(t) = - l n  AC+ (2~) p AC/(BP){(p- 1) D/BC 

+ (BC/D)P-leBC/DF(1- p, BC/D)+ [1 + p/(BC/D)] 

x [ p -  ( -  1) 2p r(1 - p )  r(p) 7*((P, --BC/D)) - ( B C / D ) / ( p -  1) 

+ ln(BC/D)+ (BC/D)Z/[Z(p - 1 ) ( p - 2 ) ] 2  F2(1,2;3, 3 - p; BC/D)] } 

(17) 

5. THE ENTROPY OF THE BKW SOLUTION FOR 
EVEN D I M E N S I O N S  

The entropy obtained in equation (17) is obviously undefined for even 
dimensions; it is necessary to find a different expression for S(t) when p is 
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not an integer. In fact, S~ can be transformed in a different way 
(X=BC/D): 

S~= ~ (-1)k+~ C(k+p) /kX  k 
k = l  

= ~ ( - 1 )  k+~ F ( k + p - 1 ) / X k + ( p  - 1) ~, ( - 1 )  k+a F ( k + p - 1 ) / k X  k 

k = l  k = l  

This last step is repeated p times [taking (11) into account] to obtain 

Sl 
p - - I  

= ( l / X )  ~ F ( p ) / [ F ( p - n ) ]  ( - 1 ) ~ F ( p + k - n ) / X  k 
n = O  k = O  

p 1 

n = O  

(18) 

The same procedure can be used to evaluate $2 and it can easily be shown 
that 

P 

s 2 = r ( p +  1)e ~ F~ x" " - l r ( ~ - p ,  x) (19) 
n ~ O  

The entropy of the BKW solution, for even dimensions, can now be 
expressed in closed form, in terms of incomplete gamma functions; taking 
(9), (18), and (19) into account and rearranging terms, we get 

S(t) = - I n  AC + (2=) p AC/(BP)(p{1 + (D/BC)[p - eBC/DF(o, BC/D)] 

p 1 

- e Bc/~ ~ n(BC/D) p - " - ,  F ( n -  p, BC/D)) (20) 
n - - O  

6. T H E  E N T R O P Y  OF T H E  T J O N - W U  M O D E L  

The results (17) and (20) show that the entropy of the BKW solution 
can be found, in closed form, for all dimensions. Rouse and Simons (13) and 
gift el a/. (14) considered that the logarithmic integrals contained in Eq. (1) 
precluded such a result. However, it should be emphasized that these 
results are only defined for BC/D > 1 It > ln( (d+ 4)/2)]. 

The expression of S(t) for d =  3 was derived in a previous paper. (18) 
Instead of deriving it again from Eq. (17), it is of some interest to consider 
the entropy of the Tjon Wu model (d=  2) and study some of its properties. 
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This entropy is calculated from the general result (20) as a function of time; 
by taking (5) into account, the following result is obtained: 

S ( t ) = l n 2 ~ z + ( 1 - 2 e  z ) / ( 1 - e  ~ ) - l n ( 1 - 2 e  t) 

+ e - t ~ [ ( 1  - e - ' ) ] [ 1  -e~e'-2~r(o, e t -  2)] (21) 

As a way of checking the validity of this result, the first time derivative of 
the entropy is calculated. A straightforward time differentiation of Eq. (21) 
leads to 

dS /d t  = 1/(e t - 1 ) + et(2 - e ~) e (e'- 2)F(O, e t - 2)/(e t -- 1 )2 

Taking the following result into account/2~ 

e(ef-2~_F(0, e t - -2 )  = U(1, 1, e t - 2 )  

The first time derivative is expressed as 

d S / d t =  1 / ( e ' -  1 )+  e~(2-  e ') U(1, 1, e ' -  2)/(e ~ -  1) 2 

Then using one of the transformation properties of the confluent 
hypergeometric function (equation 13-4-19 of Ref. 20) and the following 
result: 

f 
O:3 

U(1, 1, z) = e-Z'/(1 + t) dt = 1 / z -  U(1, 0, z ) / z  
0 

(where z = e ' -  2), it is found that 

dS /d t  = 2U(2, 0, e ' -  2)/(e ~ -  1) 2 

in accordance with the results of Garrett  (17) and Ziff et al. ~4~ 

(22) 

7. THE E N T R O P Y  OF THE T J O N - W U  M O D E L  A N D  THE 
M C K E A N  C O N J E C T U R E  

In a previous paper ~18~ an inequality was derived showing that the 
McKean conjecture is violated by the d-dimensional BKW distribution 
function. Neither the present attempt nor the one by Garrett  (17) gives an 
approximate numerical value of n for which the McKean conjecture is 
untrue. Also, the question of whether (2) is violated for times greater than 
a critical value or for a finite time domain is not clarified in the current 
literature on the subject. The derivation which follows sheds some light on 
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the question. The following development is done for the Tjon-Wu model 
but can be generalized for any value of d. 

Starting from equation (22) dS/dt is expanded in successive powers of 
e - ' .  The first factor 2 / @ ' -  1) 2 can be expanded easily: 

2/(e'-1)2= ~ (2k-2) e -k' (23) 
k = 2  

The confluent hypergeometric function can also be expanded, provided 
that t > in 3: 

z c  

U(2, 0, e' - 2) = (e ~ - 2)- 2 E ( - -  1)k(2)k(3)k[kl( e ' -  2) k] 
k = 0  

A systematic and careful evaluation of the terms up to e 
expansions (24) and (25) into equation (22), gives 

dS/dt=2e at+22e 6 ,  84e  7~+690e-8, 

- 5352e 9t+48638e 10,_486684e 11t 

(24) 

-12t, using the 

+ 5362378e 12,... (25) 

Differentiating ( n -  1) times with respect to t and expressing the result as a 
limited Taylor series, as a function of the variable X =  e- t ,  leads to 

( -1 )nd '~S /d t "=-2(4 )  n l e - 4 ' - 2 2 ( 6 )  ..... l e  6 '+84(7)n l e - 7 t + R 7  (26) 

where the remainder R 7 is equal to 

R 7 = - 6 9 0 ( 8 ) n - ~ e  8 '+e-8 ' [9! (5352/1!8! ) (9)  n 10e ' 

- 10!(48638/2! 8!)(10) ' , -1(0e- ')2 

+ 1l!(486684/3!8!) 1l n- 1(0e-')3 

- 12!(5362378/4! 8!)(12) n 1(0e-')4 + ' " ]  

and where 0 < 0 < 1. 
A series of conditions for the quantity in brackets to be always positive 

is 

e' > 5(48638/5352)(10/9) n -1 0 (27) 

e' > 3(5362378/486684)(12/11 )n i 0 (28) 
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It is easy to verify, in general, that condition (27) is sufficient and includes 
all the following conditions above. As a result 

R7 > -690(8)  n- ~ e -St (29) 

Then, from (26) and (29), it is obvious that the McKean conjecture (2) will 
be violated if both condition (27) and the following condition are satisfied: 

84(7) n l e -7 ' - -2(4)n  1 e - 4 t - 2 2 ( 6 ) n  a e 6 t - 6 9 0 ( 8 ) n - J e - 8 '  > 0  (30) 

In order for the last condition to be satisfied, it can be expected that n 
will have to be big and therefore that the term in e 4t will be negligible (for 
n big) with respect to the other three; as a result, the following condition 
will probably be enough for the McKean conjecture to be untrue: 

2 2 ( 6 ) n - l e 2 t - 8 4 ( 7 )  n-~ e t + 6 9 0 ( 8 ) n - l < O  (31) 

The condition for the above polynomial in e' to have real roots can be 
found to be 

n > 105.38 (32) 

and inequality (31) will be satisfied, in the approximation of n big, if 

(76695/9702)(8/7)n-1 < e t <  (42/11 )(7/6) n 1 (33) 

It is obvious that inequality (33) becomes sufficient and that (27) can be 
forgotten. Conditions (32) and (33) are then approximate conditions for 
the McKean conjecture to be violated; condition (30) is instead a strong, 
sufficient condition. 

8. THE B O L T Z M A N N  ENTROPY OF ONE OF THE SOLUTIONS 
OF THE VERY H A R D  PARTICLE M O D E L  

In the literature, many kinetic models with a stochastic mechanism 
have been studied, in which momentum is not conserved, but total number 
of particles and total energy are. (22) Binary collisions are described in terms 
of a transition rate that depends only on the total energy of the two 
colliding particles and not on the energies of the separate particles. When 
the transition rate has the specific form of a 6 function, the product of the 
relative velocity and the differential cross section increases linearly with the 
energy and the nonlinear BE leads to the very hard particle (VHP) 
model. (23~ For  this model, the BE gives an exact solution in closed form. 
The study of this solution has brought out a very interesting point: the 
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description of the approach to equilibrium by the linearized BE is not ade- 
quate for the high-energy tail of the distribution function. (8) This raises 
questions about the range of validity of the local equilibrium hypothesis, 
essential in the formulation of irreversible thermodynamics, (24~ when one 
has to study the relaxation to equilibrium. Also, this raises questions about 
the range of validity of the Gibbs relation in evaluating the entropy 
production for a system close to equilibrium, and when one wants to study 
how the entropy production evolves toward equilibrium. It seems therefore 
very important to know exact solutions of the nonlinear BE and to be able 
to calculate the entropy of these distribution functions in order to be able 
to accurately describe the approach to equilibrium. 

In this section, is calculated the Boltzmann entropy of the following 
energy distribution function solution of the VHP model(8~: 

F(X, t ) = A l e ~ X  + A2e z2x (34) 

where X =  v2/2 and A1, A2, z 1 , and 2' 2 are functions of time. This function 
corresponds to an initial ( t = 0 )  distribution function which is a super- 
position of two Maxwellians: 

F(X, 0 ) = ~ l e  fll~vq-~2e fl2x 

in which fll <f12" When t ~  oe, AI ~ 1, z 1 ~ -1 ,  A 2 ~ 0 ,  z 2 ~  - o e  and the 
function (34) converges to a Maxwell-Boltzmann type of distribution 
function: 

F(X, ~ o ) = e  x 

It is straightforward to show that, when f (v ,  t) is replaced by the 
energy distribution function F(x, t), Eq. (4) is replaced by 

S(t) = -- ~ (~?~g/aX~)o Mk(t)/k[ (35) 
k=O 

where 

g(x, t) = ln[ F (p ) (2X)  1 - P F(x, t)/(27r) p]  (36) 

in which p = d/2 and where 

M~(t)  = F(x,  t) X k dx (37) 

S(t)  will now be calculated in two dimensions in order to simplify the 
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problem, but the calculation in any dimension could be done by evaluating 
the 8kg/8v~ at v = g for instance. From (36), with p = 1, A -= A~, B= AJA~, 
e = -Z l  and fl = z l -  z2, the following expression is obtained: 

g(x, t) = ln(A/2~r) - e X +  ln(1 + Be -~x) 

The logarithm can be expanded in a Taylor series, because B < 1; then, it is 
easy to verify that 

(Okg/c?Xk)o = ~ ( _  1)~ + 1( . / f l )k  B.//7 (38) 
y - - 1  

where a term - e  has to be added to (38) for k =  1. From (38) and (34), 
the moments are found to be 

Mk(t) = AF(k + 1)[1/ak+ 1 + B/(e + fl)x+ 1] (39) 

Now, use of (35), (38), (39) leads to the result 

S(t) = - In(A(1  + B)/2zc) + A [ 1/e + Be/(e + fl)2] 

-(A/cQ ~ (-1)J+I(BJ/j) ~ (-j f l /e) k 
j - 1  k = l  

-- [AB/(e+fl)] ~ (--1)J+'(BJ/j) ~ [- j f l / (e+fi)]  ~ (40) 
j - 1  k - 1  

In this last equation, the infinite sums over k can easily be written in closed 
form to give 

S(t) = - ln (A(1  + B)/2~z) + A [ 1/e + Be/(e + fl)2] 

- (Aft~a) ~ (-B)J/(fij+a) - [ABfi/(o:+fl)] /_... 
y - I  

x ~ (--B)J/(fij+e+fl) (41) 
y 1 

The following infinite series, 

f ( B ) =  ~ (-BlJ/(aj+b) 
y = l  

can be calculated by differentiating both sides with respect to B and solving 
the obtained first-order differential equation: 

f(B) --- --(1/a)(B)b/a f [(B)-b/a/(1 + B)] dB (42) 
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in which the integral can be expressed with an incomplete/? function: 

f (  -- B)  - b/a( 1 + B)  - 1 dB = ~ w ( a  + 1~( 1 - b/a, b /a)  (43) 

When the results (42) and (43) are inserted into (41), the entropy of the 
VHP model distribution function (34), for p = 1, can be expressed in closed 
form: 

S( t )  = - ln (A(1  + B)/2rc) + A[1/c~ + B~/(c~ +/?)2]  

+ [A(B)~/B/.]  ~ B / ~ +  ,~(1 - a/p, ~//?) 

+ [ A / ( e + / ? ) ] ( B ) 2 + " / ~ N B / ( o + I ) ( - c ( / ? ,  1 + , / / ? )  (44) 

9. C O N C L U S I O N  

This paper both improves and concludes a previous attempt ~8) to 
evaluate the entropy of the BKW solution. The method used here is 
apparently more powerful, because, except for the moments of the non- 
equilibrium distribution, no integral calculus is needed and if the infinite 
series (4) converges and can be expressed in closed form, the non- 
equilibrium entropy can be obtained without having to calculate the 
logarithmic integrals contained in (1). In this paper, the entropy of the 
BKW solution has been calculated for all dimensions, obtaining two dif- 
ferent expressions in closed form for odd and even values of p = d/2. Par- 
ticular attention was given to the study of the entropy of the Tjon-Wu 
model (p = 1). A minimum value of n was obtained as well as a condition 
for which the McKean conjecture is violated within certain time intervals 
depending on n itself. Although condition (31) is sufficient, it is 
approximate and a value of n slightly smaller than (33) would be expected. 
In view of the interest in the VHP model in the literature, (s) the present 
method was used to calculate the Boltzmann entropy of one of its exact 
solutions. Knowledge of the entropy of distribution functions that are exact 
solutions of the BE are of great interest to the study of the approach to 
equilibrium in nonequilibrium thermodynamics, particularly since the 
solutions of the linearized BE apparently give inadequate descriptions of 
the process. 
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